If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=(-16x^2)+160x+128
We move all terms to the left:
0-((-16x^2)+160x+128)=0
We add all the numbers together, and all the variables
-((-16x^2)+160x+128)=0
We calculate terms in parentheses: -((-16x^2)+160x+128), so:We get rid of parentheses
(-16x^2)+160x+128
We get rid of parentheses
-16x^2+160x+128
Back to the equation:
-(-16x^2+160x+128)
16x^2-160x-128=0
a = 16; b = -160; c = -128;
Δ = b2-4ac
Δ = -1602-4·16·(-128)
Δ = 33792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{33792}=\sqrt{1024*33}=\sqrt{1024}*\sqrt{33}=32\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-32\sqrt{33}}{2*16}=\frac{160-32\sqrt{33}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+32\sqrt{33}}{2*16}=\frac{160+32\sqrt{33}}{32} $
| 8x-15=-21 | | -3(x+2)(x-2)=0 | | 2n-35=77+6n | | -45=6(x+3 | | 3(w+1)=2/7(w-1) | | –6+x=–13 | | 10a+a-5a=12 | | 4a=(-3)-a^2 | | I35=5(x+9) | | f(1)=75-1.5 | | 11-x=45-35x | | 8z-7z=14 | | -27-2n=-16(n-39)+26(7n+21) | | 14/7=n/27 | | 7x-80=20 | | 4w-5=20-w | | 7^2n+1=49^3 | | 23+m=5.84 | | -33(k-1)=-18(k-36) | | n6+26n +2n=12n=12 | | 2x-+x=8x-8/3 | | 9=13-y | | 14x=21x | | x^2/2−2=38.5 | | 5=15-2v+3v | | g+11=7+2g+20 | | 452k=12204 | | 6=14-g2 | | 9y2+15y+18=5y2−5y−7 | | 9y2+15y+18 =5y2−5y−7 | | -12x-40=40 | | X+6/3=x/2 |